Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 63: 108079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36528238

RESUMO

The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.


Assuntos
Escherichia coli , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia de Proteínas , Biotecnologia , Códon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
ACS Synth Biol ; 10(3): 466-477, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33577304

RESUMO

Protein misfolding and aggregation are linked to neurodegenerative diseases of mammals and suboptimal protein expression within biotechnology. Tools for monitoring protein aggregates are therefore useful for studying disease-related aggregation and for improving soluble protein expression in heterologous hosts for biotechnology purposes. In this work, we developed a promoter-reporter system for aggregated protein on the basis of the yeast native response to misfolded protein. To this end, we first studied the proteome of yeast in response to the expression of folded soluble and aggregation-prone protein baits and identified genes encoding proteins related to protein folding and the response to heat stress as well as the ubiquitin-proteasome system that are over-represented in cells expressing an aggregation-prone protein. From these data, we created and validated promoter-reporter constructs and further engineered the best performing promoters by increasing the copy number of upstream activating sequences and optimization of culture conditions. Our best promoter-reporter has an output dynamic range of approximately 12-fold upon expression of the aggregation-prone protein and responded to increasing levels of aggregated protein. Finally, we demonstrate that the system can discriminate between yeast cells expressing different prion precursor proteins and select the cells expressing folded soluble protein from mixed populations. Our reporter system is thus a simple tool for diagnosing protein aggregates in living cells and should be applicable for the health and biotechnology industries.


Assuntos
Genes Reporter/genética , Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...